Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice

Author Department

PVLSI; Surgery

Document Type

Article, Peer-reviewed

Publication Date

11-1-2009

Abstract

BACKGROUND: An effective cancer therapeutic must selectively target tumours with minimal systemic toxicity. Expression of a cytotoxic protein using Salmonella typhimurium would enable spatial and temporal control of delivery because these bacteria preferentially target tumours over normal tissue. METHODS: We engineered non-pathogenic S. typhimurium to secrete murine TNF-related apoptosis-inducing ligand (TRAIL) under the control of the prokaryotic radiation-inducible RecA promoter. The response of the RecA promoter to radiation was measured using fluorometry and immunoblotting. TRAIL toxicity was determined using flow cytometry and by measuring caspase-3 activation. A syngeneic murine tumour model was used to determine bacterial accumulation and the response to expressed TRAIL. RESULTS: After irradiation, engineered S. typhimurium secreted TRAIL, which caused caspase-3-mediated apoptosis and death in 4T1 mammary carcinoma cells in culture. Systemic injection of Salmonella and induction of TRAIL expression using 2 Gy gamma-irradiation caused a significant delay in mammary tumour growth and reduced the risk of death by 76% when compared with irradiated controls. Repeated dosing with TRAIL-bearing Salmonella in conjunction with radiation improved the 30-day survival from 0 to 100%. CONCLUSION: These results show the pre-clinical utility of S. typhimurium as a TRAIL expression vector that effectively reduces tumour growth and extends host survival.

Publication ISSN

0007-0920

Share

COinS