Effects of butyl benzyl phthalate exposure during pregnancy and lactation on the post-involution mammary gland

Author Department

PVLSI

Document Type

Article, Peer-reviewed

Publication Date

9-2023

Abstract

The mammary gland undergoes comprehensive reorganization during pregnancy, lactation, and subsequent involution. Following involution, the mammary gland has structural and functional differences compared to the gland of a nulliparous female. These parity-associated changes are regulated by hormones and may be vulnerable to endocrine-disrupting chemicals (EDCs). In this study, we evaluated the long-term effects of butyl benzyl phthalate (BBP), an estrogenic plasticizer, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 3, 500, or 18000µg/kg/day BBP throughout both pregnancy and the lactational period. The litters born to these females were evaluated for litter size and growth. The parous females were then kept for five weeks following weaning of the pups, during which period there was no exposure to BBP. After five weeks of post-weaning, mammary glands were collected and assessed for changes in histomorphology, steroid receptor expression, innate immune cell number, and gene expression. An unexposed age-matched nulliparous control was also evaluated as a comparator group. BBP increased male and female pup weight at puberty and female offspring in adulthood. BBP also altered innate immune cells in the post-involution mammary gland, reducing the effect of parity on macrophages. Lastly, BBP modestly increased mammary gland ductal complexity and periductal structure, but had no effect on expression of estrogen receptor, progesterone receptor, or a marker of proliferation. These results suggest that BBP may interfere with some effects of parity on the mouse mammary gland and induce weight gain in exposed offspring.

Keywords: antiandrogen; endocrine disruptor; periductal stroma; whole-mount; xenoestrogen.

PMID

37743007

Share

COinS