Effects of Pubertal Exposure to Butyl Benzyl Phthalate, Perfluorooctanoic Acid, and Zeranol on Mammary Gland Development and Tumorigenesis in Rats

Author Department

PVLSI

Document Type

Article, Peer-reviewed

Publication Date

1-2022

Abstract

Endocrine-disrupting chemicals (EDCs)-including butyl benzyl phthalate (BBP), perfluorooctanoic acid (PFOA), and zeranol (α-ZAL, referred to as ZAL hereafter)-can interfere with the endocrine system and produce adverse effects. It remains unclear whether pubertal exposure to low doses of BBP, PFOA, and ZAL has an impact on breast development and tumorigenesis. We exposed female Sprague Dawley rats to BBP, PFOA, or ZAL through gavage for 21 days, starting on day 21, and analyzed their endocrine organs, serum hormones, mammary glands, and transcriptomic profiles of the mammary glands at days 50 and 100. We also conducted a tumorigenesis study for rats treated with PFOA and ZAL using a 7,12-dimethylbenz[a]anthracene (DMBA) model. Our results demonstrated that pubertal exposure to BBP, PFOA, and ZAL affected endocrine organs and serum hormones, and induced phenotypic and transcriptomic changes. The exposure to PFOA + ZAL induced the most phenotypic and transcriptomic changes in the mammary gland. PFOA + ZAL downregulated the expression of genes related to development at day 50, whereas it upregulated genes associated with tumorigenesis at day 100. PFOA + ZAL exposure also decreased rat mammary tumor latency, reduced the overall survival of rats after DMBA challenge, and affected the histopathology of mammary tumors. Therefore, our study suggests that exposure to low doses of EDCs during the pubertal period could induce changes in the endocrine system and mammary gland development in rats. The inhibition of mammary gland development by PFOA + ZAL might increase the risk of developing mammary tumors through activation of signaling pathways associated with tumorigenesis.

Keywords: RNA sequencing; Wnt signaling; endocrine-disrupting chemicals; estrogen signaling; mammary gland development; pubertal exposure; tumorigenesis.

PMID

35163327

Share

COinS