A Novel Anesthesia Technique For Electroencephalographic Monitoring During Resection Of Epileptic Focus.

Stanlies D'Souza
Baystate Health, dsouzastan@yahoo.com

Follow this and additional works at: https://scholarlycommons.libraryinfo.bhs.org/all_works

Part of the Medicine and Health Sciences Commons

Recommended Citation

This Presentations, Research is brought to you for free and open access by Scholarly Commons @ Baystate Health. It has been accepted for inclusion in All Scholarly Works by an authorized administrator of Scholarly Commons @ Baystate Health.
A Novel Anesthesia Technique for Electroencephalographic Monitoring During Resection of Epileptic Focus

Stanlies D’Souza, MD
Department of Anesthesiology at Baystate Medical Center / University of Massachusetts Medical School

Introduction
During anesthetic management of epileptic focus resection, administration of anesthetic should be tailored to preservation of delta waves, prevention of burst suppression so that dome and spike epileptic activity can be monitored.

Case Description
A 56 year old male with medically uncontrolled epilepsy presented for stereotactic left temporal craniotomy and cortico-amygdalohippocampectomy. Anesthetic goal was to maintain predominantly delta EEG waves without burst suppression so that dome and spike epileptic EEG waves can be monitored during surgical resection of the epileptic focus. After dexmedetomidine bolus of 1mcg/kg, anesthesia was induced with propofol and the patient was intubated following laryngotracheal spray with 2% lidocaine and bolus of remifentanil. Anesthesia was maintained with infusion of low dose of remifentanil 0.02-0.03 mcg/kg/min, dexmedetomidine 0.3-0.5mcg/kg/hr and 0.5%-0.6% expired sevoflurane during resection period. Surgical procedure was performed under adequate EEG guidance.

EEG waves

<table>
<thead>
<tr>
<th>Wave type</th>
<th>Frequency Band (Hz)</th>
<th>Brain Region</th>
<th>Person state</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha (α)</td>
<td>8–13</td>
<td>Occipital</td>
<td>Awake with eyes closed</td>
<td></td>
</tr>
<tr>
<td>Beta (β)</td>
<td>13–30</td>
<td>Parietal, Frontal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta (δ)</td>
<td>0.5–4</td>
<td>Infants, sleeping adults</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theta (θ)</td>
<td></td>
<td>Children, sleeping adults</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


EEG waves and Anesthesia

<table>
<thead>
<tr>
<th>Surgical Anesthesia</th>
<th>Shows predominantly slow delta waves. Deep anesthesia is associated with burst suppression or isoelectric EEG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opioids</td>
<td>High dose opioids produce delta waves but not burst suppression on EEG.</td>
</tr>
<tr>
<td>Propofol</td>
<td>Deepening of anesthesia with propofol will result in delta waves, burst suppression and electrical silence.</td>
</tr>
<tr>
<td>Dexmedetomidine</td>
<td>Produces alpha and theta activity, EEG resembles normal sleep, no delta waves or burst suppression observed. If it is an ideal agent to administer during EEG monitoring.</td>
</tr>
<tr>
<td>Sevoflurane/Isoflurane</td>
<td>Produces burst suppression around 1.5 MAC concentration and electrical silence at 2 MAC.</td>
</tr>
</tbody>
</table>

Table 1 Description of Alpha, Beta, Delta and Theta waves.

Our novel Anesthesia Technique during EEG monitoring for resection of epileptic focus:
1. Avoid premedication with midazolam.
2. Premedicate with 1 mcg/kg bolus of dexmedetomidine.
3. Induction with propofol and remifentanil.
4. Intubation following administration of remifentanil bolus and laryngotracheal spray with 2% lidocaine.
5. Maintenance of anesthesia with dexmedetomidine/low-dose remifentanil infusion/less than 0.5 MAC of sevoflurane.

References

Conclusion
• We selected anesthetic agents which had the least effect on EEG monitoring.
• Maintenance of anesthesia with a combination of dexmedetomidine, low dose remifentanil and low expired concentration of volatile anesthetic agents allows monitoring EEG waves.
• This technique has least effect on dome and spike activity during epileptic focus resection.