A case of Dandy-Walker Syndrome

Stanlies D'Souza
Baystate Health, dsouzastan@yahoo.com

Follow this and additional works at: https://scholarlycommons.libraryinfo.bhs.org/all_works

Recommended Citation
Dandy-Walker Malformation (DWM) is a congenital anomaly of the cerebellum and fourth ventricle characterized by hypoplasia of the cerebellum and hydrocephalus secondary to cystic expansion within the fourth ventricle.

Such malformations commonly result in increased intracranial pressure from hydrocephalus and facial anatomical distortions such as cleft lip/palate, hypertelorism and micrognathia making airway management challenging.

After inhalational induction and placement of an intravenous line, airway was managed with a laryngeal mask airway (LMA). The perioperative course was uneventful.

Obstructive Hydrocephalus
- Cranial nerve palsies

Raised intracranial pressure
- Irritability
- Vomiting
- Convulsions

Cerebellar signs
- Ataxia
- Nystagmus

Agenesis of Corpus Callosum
- Developmental delay/Mental retardation
- Medullary failure (respiratory regulation)

Seizures
- Cleft palate
- Congenital heart defects (VSD)
- Micrognathia
- Renal abnormalities
- Eye abnormalities (increased intracranial pressure)
- Infundibular hematomas
- Skeletal abnormalities (lumbar vertebrae)
- Posterior fossa lymphomas
- Polyactyly
- Syringomyelia

Table 2: Extracerebral Anomalies

Figure 1. Dandy-Walker Malformation with Enlargement of Posterior Fossa. A) T2 Weighted MRI. Absence of cerebellar vermis (arrow). B) T1 weighted MRI. Elevation tentorium (bottom arrow) and Hydrocephalus.

REFERENCES

Dandy-Walker Malformation is a heterogeneous and in some cases auto recessive inheritance. Incidence of 1:25,000 newborns. Affected children with hydrocephalus often present with bulging fontanelles and occiput, congenital neurodevelopmental and craniofacial anomalies. Therefore, patients with DWM often can present with potential challenging airway management requiring advance airway equipment preparation at bedside, such as rigid or flexible fiberoptic airway equipment.

A major concern in a patient with DWM is intracranial pressure (ICP) management. Endotraheal intubation should be done as gentle as possible. An LMA was used in our case to avoid increased sympathetic response from intubation. The use of succinylcholine is also often avoided as it has the potential to increase ICP. Inhalational agents cause a dose dependent rise in ICP, however isoflurane and sevoflurane <1 MAC concentration do not cause a significant rise in ICP. In addition, hypercarbia results in an increase in cerebral flow and as a result elevates ICP. End tidal CO2 should be maintained at 30-35mmhg.

In addition to the 4th ventricle and cerebellum abnormalities, agenesis of Corpus Callosum in DWM patients increases their likelihood of apnea and respiratory failure. Confirm adequate oxygenation and ventilation prior to extubation. Precautions must be taken for post-operative respiratory decompensation.

Key to successful anesthetic management in these patients are careful assessment of airway anatomy with appropriate plan for difficult airway, ICP control and attentive post-operative care monitoring.