6-2019

Newborn Medicine Poster - 2019

Laura Madore MD
Baystate Health, laura.madore@baystatehealth.org

Karen Ricci MPH
Baystate Health, karen.ricci@baystatehealth.org

Jeffrey Shenberger MD
Baystate Health, jeffery.shenberger@baystatehealth.org

Follow this and additional works at: https://scholarlycommons.libraryinfo.bhs.org/research_education

Part of the Medicine and Health Sciences Commons

Recommended Citation
Madore, Laura MD; Ricci, Karen MPH; and Shenberger, Jeffrey MD, "Newborn Medicine Poster - 2019" (2019). Research and Education Posters. 7.
https://scholarlycommons.libraryinfo.bhs.org/research_education/7

This Book is brought to you for free and open access by the Presentations and Posters at Scholarly Commons @ Baystate Health. It has been accepted for inclusion in Research and Education Posters by an authorized administrator of Scholarly Commons @ Baystate Health.
New England Donor Milk Macronutrient Analysis
Laura Madore, MD, Karen Ricci, MPH, Jeffrey Shenberger, MD

BACKGROUND:
• Human breast milk (BM) is the AAP-recommended form of nutrition for preterm infants
• The nutritional qualities of BM can vary significantly, especially with human donor breast milk (DBM)
• Human DBM is pooled, pasteurized BM that many preterm infants receive when mother’s own BM is unavailable
• Little is known about the nutritional content of the DBM from our local HMBANA-accredited milk bank, Mothers’ Milk Bank Northeast, which serves most of the area NICUs

OBJECTIVE:
• Describe the nutritional content of different batches of pooled, pasteurized DBM purchased from Mothers’ Milk Bank Northeast
• Compare these results to the published standards1 both with and without nutritional fortification

METHODS:
• Thirty (n=30) different pooled, pasteurized, frozen batches of DBM were thawed and a small aliquot (9ml) was removed from each
• Each aliquot was warmed, homogenized, and then immediately analyzed in triplicate
• Analysis occurred via a mid-infrared instrument (Miris Human Milk Analyzer™) per manufacturer’s recommendations
• Each batch’s macronutrient content was recorded and averaged
• To determine the total macronutrient content with fortification, we computed the addition of our unit’s standard fortification, and compared to published standards1

RESULTS:
• Mean true protein: 0.78 ± 0.13 g/dl (range 0.58 - 1.16) which is statistically well below the standard of 1.0 g/dl (See Figure 1)
• Mean fat: 3.19 ± 0.70 g/dl (range 1.99 - 4.88), not a statistically significant difference compared to the standard of 3.4 g/dl, however, 63% of batches were below the standard (See Figure 2)
• Mean carbohydrate: 8.12 ± 0.36 g/dl (range 7.69 - 8.30), all samples were above the standard

CONCLUSIONS:
• This study adds to the growing body of literature that most DBM batches fall below the assumed nutritional standards of human BM, especially in regards to fat and protein, and there is a large degree of variability among different DBM batches
• This may be due to a variety of factors including extensive DBM processing, maternal factors, milk maturity, etc.
• Even with nutritional fortification, DBM from our local milk bank fails to meet the standard fat & protein goals for preterm infants
• This nutritional deficit, especially in those fed exclusive DBM, has been shown to impact growth as well as neurodevelopment

REFERENCES: