Sex differences in response inhibition-related neural predictors of PTSD in recent trauma-exposed civilians

Author Department

Emergency Medicine

Document Type

Article, Peer-reviewed

Publication Date



Background: Females are more likely to develop posttraumatic stress disorder (PTSD) than males. Impaired inhibition has been identified as mechanism for PTSD development, but studies on the potential sex differences of this neurobiological mechanism and how it relates to PTSD severity and progression are sparse. Here we examined sex differences in neural activation during response inhibition and PTSD following recent trauma.

Methods: Participants (N= 205, 138 female sex assigned at birth) were recruited from emergency departments within 72 hours of a traumatic event. PTSD symptoms were assessed 2-weeks and 6-months post-trauma. A Go/NoGo task was performed 2-weeks post-trauma in a 3T MRI scanner to measure neural activity during response inhibition in the ventromedial prefrontal cortex (vmPFC), right inferior frontal gyrus (rIFG), and the bilateral hippocampus. General Linear models were used to examine the interaction effect of sex on the relationship between our regions of interest (ROIs) and the whole brain, and PTSD symptoms at 6-months, and symptom progression between 2-weeks and 6-months.

Results: Lower response-inhibition-related vmPFC activation 2-weeks post-trauma predicted more PTSD symptoms at 6-months in females but not in males, while greater response-inhibition-related rIFG activation predicted lower PTSD symptom progression in males but not females. Whole brain interaction effects were observed in the medial temporal gyrus and left precentral gyrus.

Conclusions: There are sex differences in the relationship between inhibition-related brain activation and PTSD symptom severity and progression. These findings suggest that sex differences should be assessed in future PTSD studies and reveal potential targets for sex-specific interventions.

Keywords: Posttraumatic stress disorder (PTSD); functional Magnetic Resonance Imaging (fMRI); response inhibition; right inferior frontal gyrus (rIFG); sex differences; ventromedial prefrontal cortex (vmPFC).