Risk factor model to predict a missed clinic appointment in an urban, academic, and underserved setting
Author Department
Medicine
Document Type
Article, Peer-reviewed
Publication Date
4-2015
Abstract
In the chronic care model, a missed appointment decreases continuity, adversely affects practice efficiency, and can harm quality of care. The aim of this study was to identify predictors of amissed appointment and develop a model to predict an individual's likelihood of missing anappointment. The research team performed a retrospective study in an urban, academic,underserved outpatient internal medicine clinic from January 2008 to June 2011. A missedappointment was defined as either a "no-show" or cancellation within 24 hours of the appointmenttime. Both patient and visit variables were considered. The patient population was randomly divided into derivation and validation sets (70/30). A logistic model from the derivation set was applied in the validation set. During the period of study, 11,546 patients generated 163,554 encounters; 45% of appointments in the derivation sample were missed. In the logistic model, percent previouslymissed appointments, wait time from booking to appointment, season, day of the week, provider type, and patient age, sex, and language proficiency were all associated with a missedappointment. The strongest predictors were percentage of previously missed appointments and wait time. Older age and non-English proficiency both decreased the likelihood of missing anappointment. In the validation set, the model had a c-statistic of 0.71, and showed no gross lack of fit (P=0.63), indicating acceptable calibration. A simple risk factor model can assist in predicting the likelihood that an individual patient will miss an appointment.
Recommended Citation
Torres O, Rothberg MB, Garb J, Ogunneye O, Onyema J, Higgins T. Risk factor model to predict a missed clinic appointment in an urban, academic, and underserved setting. Popul Health Manag. 2015 Apr;18(2):131-6.